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Abstract-A two-dimensional mathematical model of two-phase flow is presented. The analytical for- 
mulation of the model involves the mass, momentum and energy conservation equations for vapour and 
droplet flows, liquid film and for the wall of the channel, and also a number of subsidiary relations 

incorporated to close the set of equations. The assumptions invoked are analysed. 

1. INTRODUCTION 

IN RECENT times a considerable amount of attention 
has been devoted to the development of com- 
putational methods to determine different two-phase 
parameters. The need for their development to inves- 
tigate two-phase flows is accounted for by the fact 
that it is not always possible to obtain experimentally 
information required for the design of heat ex- 
changers. 

Two-phase flows are characterized by a stepwise 
variation of physical properties, such as viscosity, den- 
sity, thermal conductivity, etc., in space and time and, 
in a general case, by the unsteady and non-uniform 
character of interphase exchange processes. These fea- 
tures make it difficult to develop mathematical models 
of two-phase systems. The analysis of available pub- 
lications shows that the first models of two-phase fluid 
flows in pipes have been developed not to investigate 
directly the characteristics of these flows, but to 
describe analytically the conditions of burnout heat 
transfer. The basic equation in this case was that for 
the film flow rate, whereas the flow characteristics 
were described very schematically and empirically. 

The basic parameters of two-phase systems, such 
as temperature, concentration and phase velocity 
fields, are determined with the aid of one- and multi- 
dimensional models based on mass, momentum and 
energy conservation laws in the form of differential 
equations. The controversial point here turns out to 
be the construction of the conservation equations 
themselves. Two methods of deriving such partial 
differential equations are known. The first of these, 
the statistical approach, is characterized by the use of 
conservation laws in integral form with subsequent 
space-, time- and ensemble-averaging and transition 
from integral expressions to differential ones [l&20]. 
The difficulty of this approach is associated with the 
determination of the scales of averaging. Here, just 
as in the theory of turbulence, a non-closed set of 
equations results whose closure requires resorting to 
a number of hypotheses. The second method consists 
in averaging the fluid properties over an isolated space 

and assuming the interacting phases to be inter- 
penetrating continua [21-271. No physico-mechanical 
model is generally applied in this case which would 
describe the newly obtained hypothetic flow. 

The difficulties characteristic of the above-men- 
tioned methods reside in the specification of the con- 
ditions for mechanical and thermal interaction of 
phases and the conditions at the boundaries. As noted 
in ref. [28], a not very lucid formulation of the bound- 
ary conditions is attributable to the fact that the wall 
region of a two-phase flow is very provisionally 
modelled by a flow with ‘spread’ characteristics 
because of the compliance of the linear scales of 
motion with the dispersed phase dimensions and 
because the conditions of zero velocity at the walls for 
a dispersed phase are not met. 

Despite the quantity of works dealing with the deri- 
vation of mass, momentum and energy conservation 
equations for two-phase flows, the number of specific 
models of two-phase flows are very limited. These are 
first of all the one-dimensional models which deter- 
mine the cross-section-averaged basic flow charac- 
teristics (phase velocities, vapour temperature, mean 
film thickness, etc.) and the parameters in the burnout 
heat transfer cross-section [29, 301. A characteristic 
feature of these models is the application of non- 
universal empirical relations. A comprehensive survey 
of these works is made in ref. [3 l] which also considers 
various techniques for deriving averaged two-phase 
flow equations needed for the formulation of a two- 
dimensional problem. 

A few two-dimensional models have been 
developed for the solution of separate problems with 
momentum, mass and energy conservation laws with 
a different degree of completeness. 

In works [6, 321 one of the most important pro- 
cesses characteristic of annular-dispersed and dis- 
persed flows-the process of dispersed phase motion 
in a turbulent vapour-droplet core-is modelled in a 
two-dimensional statement. In ref. [32] the assump- 
tions are substantiated and the limits are specified for 
the applicability of the diffusion scheme of particle 
deposition in a turbulent gas flow. It is assumed that 
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NOMENCLATURE 

thermal diffusivity 
concentration 
heat capacity 
diameter 
diffusion coefficient 
acceleration due to gravity 
dimensionless specific mass flux 
integral mass flux 
length of the channel 
liquid flow rate 
dimensionless liquid flow rate 

pressure 
specific heat flux 
transversal and longitudinal coordinate, 

respectively 
heat of vaporization 

slip 
temperature 
vapour velocity 
droplet velocity 
steam quality 
coordinate of reference point. 

Greek symbols 

; 

heat transfer coefficient 
hydraulic resistance coefficient 

6 film thickness 
A dimensionless film thickness 

& turbulent diffusion coefficient 

0 dimensionless temperature 
1 thermal conductivity 

V kinematic viscosity 
5, r~ dimensionless transversal and 

longitudinal coordinate, respectively 

P density 
CT surface tension 

r shear stress 

; 
void fraction 
coefficient taking account of liquid 
fraction in the core 

y’, dimensionless transport coefficient 
Q angular velocity 

u, ~~~ kzr Ns, m, P, Q, a, 4.4, N, n,, Al, W&L 
f(t), F(t), k, .f, coefficients and 
functions within the text. 

Subscripts 
b 
C 

cell 
d 

dep 
en 
ev 
f 
F 
1 
lin 
max 

0, L 

r, 5 
rel 
S 

sur 

t, v 

C 
W 

z, v 

~3 

probable quantities 

core 
cell 
droplet 
deposition 
entrainment 
evaporation 

film 
superficial quantities 
liquid 
linear quantities 
maximum parameters 
refer to quantities at the reference point 
and at the end of the channel 
refer to transversal components 
relative quantities 
refers to quantities in saturation 
conditions 
refers to surroundings 
turbulent viscous quantities 
vapour 
volumetric quantities 
wall 
refer to longitudinal component 
refer to wall, film and core 
refers to fluctuational quantities. 

Superscripts 
averaged quantities 
refers to liquid 

I, refers to vapour. 

the concentration of admixtures and the sizes of par- 
ticles are small, the hmcmauc properties and the trans- 
port coefficients of particles and of the medium are 
identical, and that the admixtures do not alter the 
turbulent properties of the carrying flow. With these 
assumptions, the number density distribution of non- 
inertia particles is described by a two-dimensional 
diffusion equation with appropriate boundary con- 
ditions. The problem formulated in ref. [32] is ana- 
lytically solved in ref. [6]. Additional assumptions 
were made in order to introduce the cross-section- 
constant transport coefficient and the longitudinal vel- 

ocity component of the carrying medium independent 
of the transversal coordinate. The transversal flux of 
the mass of droplets obtained from the solution of the 
above problem was used to construct an analytical 
relation to determine the critical heat fluxes. 

In ref. [33] a model of a non-equilibrium dispersed 
flow is presented. The model is based on two-dimen- 
sional mass, momentum and energy conservation 
equations for vapour flow stated under the following 
basic assumptions : the processes are steady ; direct 
heat transfer from a wall to liquid is neglected; the 
liquid phase is uniformly distributed over the tube 
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cross-section ; the temperature of droplets is equal to 
the saturation temperature ; interphase interactions 
are ignored. 

Below, a two-dimensional model of annular-dis- 
persed and dispersed flows is presented in the form 
of a specified and closed set of partial differential 
equations. The construction of problems to determine 
the temperature, velocity and phase concentration 
fields is considered consistently, the hypotheses intro- 
duced are substantiated, and the results obtained are 
discussed. 

2. BASIC ASSUMPTIONS 

Consider a vertical, electrically heated tube with 
downstream, alternating, annular-dispersed (con- 
ventional heat removal region) and dispersed (post- 
burnout region) modes of flow. 

To analyse in detail the processes occurring in the 
system, the latter is divided into the following zones : 
a heat-emitting wall, a two-phase film, and a two- 
phase core. 

The two-dimensional partial differential mass, 
momentum and energy conservation equations for 
each phase in the zones (for the wall, only the energy 
equation) in unsteady-state formulation are given in 
ref. [34]. The system was specified for the given 
geometry by the procedure suggested in ref. [ 151. How- 
ever, the resulting complete mathematical model did 
not form a closed system, and the problem of its 
numerical solution remained unsolved. 

In order to close and numerically solve the system, 
it was simplified under the following assumptions : 

(1) The problem is of a steady-state nature. 
(2) The temperature field of the heat-emitting wall is 

the function of the longitudinal coordinate alone. 
(3) The fraction of heat due to film superheating is 

not taken into account in the general enthalpy 
balance. 

(4) The liquid film is a single-phase (non-boiling) film 
and the core-film interface is not disturbed (no 
rippling). These assumptions are quite suitable for 
the regions close to the burn-out cross-section 
whose boundaries can be defined in terms of Ref. 

(5) In the diffusion equation the entrainment flow is 
considered as mass sources distributed in a given 
manner. The hypothesis is justifiable when remem- 
bering that the droplets entrained from the film 
surface scatter the initial momentum, while inter- 
acting with the flow at some distance from the wall 
and, starting from a certain coordinate (the place 
of mass source action), move only due to the forces 
acting upon a droplet in a turbulent gas flow. 

(6) In the vapour-droplet core there are differently 
sized droplets and, to take into account the influ- 
ence of the droplet size on diffusive and convective 
motion of droplets in a flow, the entire assembly 
of droplets is treated as an aggregate with equally 
sized droplets in each group; the mass flow or 

the number density of droplets is considered as 
additive quantities of the corresponding charac- 
teristics of separate groups. 

(7) When formulating the problem on the deter- 
mination of velocity fields in the core and the film, 
the vapour-droplet flow core is represented as a 
homogeneous Newtonian fluid flow with known 
properties. 

3. MATHEMATICAL MODEL 

3.1. The one-dimensional energy equation for a 
tube wall with internal ‘energy release, familiar axial 
heat flux distribution and efflux of heat in the initial 
and final cross-sections is 

; 02-m,, 2 
[ I +qv*(r:-r;)-2r,q,, = 0 (1) 

with the boundary conditions 

-&I 2 = -ao,(tl -to,,,,) at z = zo (2) 

-A,$ = -cc,,(t, -tL,sur) at z = L. (3) 

The two-dimensional energy equation for a vapour- 
droplet flow core, with heat sinks due to the evap- 
oration of liquid droplets in a superheated vapour 
taken into account, is 

(c,P)3 ! at, at, 
u,3- +u,3- 

I a at, 
az ar > 

= ---‘A,,- -qv3 
r ar ar (4) 

with the boundary conditions 

t3 = t, at z = zO, O<r<r, (5) 

$=O at r=O, z,<z<L 

(6) 

tl = t,, 41 = q3 at r = ro, Z,,<Z<L 

4vIro 4 
q3 =- 

2 
( 1- 1 m, > 0 

r. 
> 9 

q3 = A32 +r, Jdepfi, 
(7) 

m, = 0 

f, = exp [l -(tw/tJ2] is the function taking into 
account the fraction of the deposition flow due to 
evaporation [45]. 

3.2. The mass transfer equation for a flow of drop- 
lets, without accounting of diffusive transfer along the 
channel for the ith group is 

ah 0,; au,, 
ci -+7+x ( ar > 

aci aci 
+v,,-+z&- ar aZ 

where J,, and J,, denote the mass sources and sinks 



194 P. L. KWLLOV et al. 

due to liquid entrainment from the film surface and for a moving, spherical, liquid droplet in a vapour 
evaporation of droplets in the post-burnout region. flow 

The boundary conditions are 
-23 

c,=S,kJ(r), z=O, O<r<ro (9) 
ac- 
I=O, r=O, zo<z<L ar (10) 

c, = 0, r = ro, z. < z < L (11) 

where ki is the mass fraction of droplets of the ith 
group and f(r) is the cross-section distribution func- 
tion of the concentration of droplets. 

The mass flow rate of liquid in a film, with evap- 
oration from its surface, entrainment and deposition 
taken into account, is defined as 

-2nr0 s I 

J,, dz. (12) 
10 

Here 

Y0 is the liquid fraction in the core at the inlet [42]. 
3.3. The continuity equation of the vapour flow, 

with mass sources due to the evaporation of droplets 
in a superheated vapour taken into acount, reads 

with the boundary condition 

I, u,=ev 1-P 
rd” ( > P' ’ 

r = r,-6, zo < z < z,,. (15) 

Taking into account the above assumptions, the 
problem of finding the velocity field in the carrying 
medium and in the liquid film under adiabatic con- 
ditions can be presented as 

For a wall of specified shape (the case of an electrically 
heated channel with the given f,), the heat balance 
equation for a tube element may yield an equation 
relating the local heat fluxes to the intensity of volu- 
metric sources 

qw = r 0 (;;:‘l) 

> 

1 ap 
= --, 

pl az 
r,-6<r<r, 

(17) 

?Td:p’(vV)v = 7 (p” - p’)g 

ndj ndj 
-p-p’lv-u((v-u)-?c-p” 

8 6 

x [(vV)v- (vV)u] + ~P”[(VV)“] 

(1% 

where K, is the coefficient of the added mass. 
3.5. In order to solve numerically the set of equa- 

tions (l)-(19), these being a simplified version of the 
annular-dispersed and dispersed flow model, it is 
necessary to close the equations and present them in 
dimensionless form. The scales for the unknown and 
independent quantities are : ro, L for the lateral and 
axial coordinate, respectively ; T, = &,,ri/l, for the 
temperature, where &, is the mean specific volumetric 
heat flux in the channel wall ; Co for the velocity ; p’ 
for the mass concentration of the flow of droplets. 

Usually, when specifying the energy equation for 
the wall (l), the heat flux density along the length of 
the channel is set as 

where f, is the dimensionless function of the axial 
heat flux distribution which satisfies the normalizing 
condition 

; 
s 

Lj,dz= 1. 
0 

(21) 

(here 5,,, is the dimensionless radius of the external 
wall of the channel, <,eX = r,,,/r,) as well as the 
relations for the mean values of the above quantities 

&, = $%, I= o’ (l:,,-l)d+ 
s 

with the boundary conditions 

au 
-=O, r=O 
ar 

u = U? = rig, an _, , ,ah __ 
pvay -pu,u, = p v dr-p’u;,u;, 

By introducing the dimensionless quantities rl = z/L, 

0 = t/TsC, q(q) = 2qF/&,ro, with equations (l)-(3) 
taken into account, the problem of determining the 
one-dimensional temperature field in a contoured tube 
wall is presented as 

r = r. -6. (18) (23) 

3.4. The convective component in the diffusion equ- 
ation (8) is determined by the steady-state equation 

ah 
- = BioNBI -~o,~~J 

all 
v = 70 (24) 
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ae,_ 
all 

- -Bi,A(B, 4&“,) rj = 1 

where A = L/ro. 

(25) 

In order to determine the heat sink due to droplet 
evaporation in the region of superheated vapour, equa- 
tion (4) the following problem will be considered. A 
single droplet is isolated together with the sur- 
rounding spherical volume of superheated vapour of 
an arbitrary radius r,,,. In the superheated vapour in 
a cell the heat flux per unit time for droplet evap- 
oration is 

& = 7rd$X(tj - tJ. 

The mass lost by evaporation is equal to 

(26) 

+ri = - 
7c&(r, - tJ 

rV 
(27) 

If the concentration and heat sinks are defined 
respectively as 

&r ’ ev1 
ei = d 

( > 
P’, 

cdl 
qv,i = bd3 (28) 

cell, 

then 

6a(t, - t,) 
qv3i = - ddip’ ci 

(29) 

where c( is determined from an experimental formula 

1351. 
After being put in dimensionless form, the problem 

of determining the temperature field in a vapour-drop- 
let core has the following form 

u,, 30, 

A all 
- ;$+!$J+ 

1 6 N C,Nu, 
--2 c Pe dw i= t 

7-8, (30) 
& 

with the boundary conditions 

03=0 at v=qO, O<l<l (31) 

80, Z=O at l=O, ~0<~<1 

81 = 8, = 0, q(1) =f,z, r = 1, 

‘lo G tl G rlo, Mr > 0 (32) 

0, = e,, 
1” a8, 

q(q)=2E,~-p &r,,=, Cl ag 
,~fDa$, 

5=1, &~<~Ill, Mr=O. (33) 

Here 

& = &, 
r0 

& = f 
M 

y++z, +!pj 

t”T 

where Pr,,, is determined according to refs. [36,46]. 
It should be noted that the heat sinks in equation 

(30) and boundary conditions in equation (33) were 
specified by representing the assembly of droplets by 
a set of groups with equally sized droplets in each 
group. The heat sink in equation (30) was considered 
as a net sink due to evaporation of droplets from 
different groups. Analogous concepts are used to spec- 
ify the boundary conditions for equation (33), where 
a fraction of heat for vaporization of depositing drop- 
lets is defined as the total evaporation flux over all the 
groups. 

3.6. Closure and specification of diffusion equation 
(8) are achieved by representing, in an explicit form, 
the diffusion coefficient of droplets, heat sinks and 
sources and by putting equations in dimensionless 
form. The general expression of the diffusion 
coefficient is as follows [37] : 

D - V’T (34) 

where 7’ is the averaged square fluctuational velocity 
of a diffusing particle and r is the Lagrangian time 
scale. 

If the fluctuation periods of the fluid and of the 
particle in a turbulent flow are equal, then 

D 7’ 
-!I_. 
D 72 

(35) 
SW 

The ratio of the averaged fluctuational velocities 
defined in ref. [38] as the degree to which the particles 
can be involved in turbulent fluctuations is essentially 
the coefficient taking account of the degree of the 
inertia of particle drifting by diffusion in a turbulent 
flow. It is clear that for inertia-less inclusions (small 
particles having the density of the carrying medium), 
the fluctuational characteristics of the flow and of the 
inclusions get closer together. Calculations show [39] 
that a substantial difference in the ratios of velocity 
fluctuation amplitudes for rotational and trans- 
lational motion of particles in the flow and, cor- 
respondingly, in the diffusion coefficients is observed 
at low Stokes numbers Ns = (v”/cod~)‘/* associated 
with high cyclic frequencies of the carrying medium 
and large sizes of particles. 

In these conditions the diffusion coefficient for an 
arbitrary group of droplets was taken to be equal to 
that for inertia-less particles with the correction for 
their inertia 

D=D,~ (36) 
u 

where Do = (0.026/Re0.25) tioro [40], and the values of 
E = ?‘/T’ are calculated according to ref. [39]. 

The mass sinks due to droplet evaporation in a 
superheated vapour in equation (8) are determined 
with the use of relation (29), divided by the vaporiz- 
ation heat, and the mass sources in the flow of 
droplets are determined by an empirical expression 
which yields the specific entrainment flow per unit 
length [41]. After putting the diffusion equation (8) 
into dimensionless form by introducing the above- 



196 P. L. KIRILLOV et al. 

given scales and relations for sinks and sources and 
transforming the linear specific entrainment into the 
mean volumetric intensity of mass sources, the 
diffusion equation for an arbitrary group of droplets 
becomes 

Here 

where 

is the Jacob number. 

A”,, = __ Jhn k,F(<) 
rd& 

(39) 

where Olin is found according to ref. [41]. It was 
assumed in calculations that the coefficient k,, which 
takes into account the mass fraction of droplets of the 
ith group in an entrained flow, is equal to the 
coefficient k, of the same group in the main flow for 
which the diffusion equation is considered. 

The drop size distribution function in the main and 
entrained flows is taken to be equal to [30] : 

CD = 4di exp (- 2d,) (40) 

dd = dd/dbd where dbd is determined according to ref. 

1431. 
The mean size of droplets in each group can be 

found from the relation 

and the mass fraction of droplets k, of the ith group 
is determined by the formula 

(42) 

The function of the distribution of mass sources 
over the channel cross-section F(t), equation (39) is 
taken to be the function which acquires the zero value 
at the wall, the maximum value at some distance from 
the wall and a certain, non-zero value in the centre of 

the channel 

F(r)=k,(l-i)‘exp[-&(1-t)] (43) 

where k, is determined from the normalizing con- 
dition and A, = mA is the optimized coefficient which 

characterizes the position of the maximum of F(t). 
The boundary conditions (9) for the diffusion equ- 

ation incorporate the radial distribution function of 

the concentration of droplets in the initial cross-sec- 
tion f(r). Most likely, the function should take into 
account the smooth character of the concentration 

profile and also follow the assumed conditions for the 
concentration field of droplets in the centre of the 
channel and at the wall. 

Taking into consideration the velocity contri- 
bution to f(r), the following expression was derived 
in dimensionless form : 

f(5) = (1-P) 2 o’ FPW,5d5 
[I 1 

-I 

(44) 

The value of the coefficient n, was optimized by 
comparing the numerical results with the experimental 
data. The effect of n, was found to decrease with the 
distance from the initial coordinate to the calculated 
cross-section. It was assumed in calculations that 
n, =4. 

After having specified k,, f(t), taking into account 
that the mean dimensionless concentration of the flow 

of droplets at the inlet is equal to 

+=;e,,-.O)/(~+~) (45) 

the dimensionless boundary conditions for the 
diffusion equation may be written as 

Ci = c,kJ-(c), q = 0, 0 < 5 < 1 (46) 

ac 
g=o, 5=0, rlo<r<l (47) 

c,=o, <=l, r/“<v/<l. (48) 

The equation of the liquid balance in a film (12), 
after being non-dimensionalized, with the re-appear- 
ante of the film taken into account (which is possible 
in the case of non-uniform heat flux distribution along 
the channel), has the form : 

Here 
Jlin I,, = ~ 

2nro p’iio 
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3.7. With the earlier hypothesis on the evaporation 
of droplets in a superheated vapour taken into 
account, the continuity equation of the vapour flow 
(14) can be put into dimensionless form as 

with the boundary condition 

{= 1-A (51) 

where 

In the above energy and diffusion equations and 
boundary conditions the value of the most probable 
droplet diameter in the initial cross-section was cal- 
culated according to ref. [43]. 

When, to express the Reynolds stresses, the eddy 
viscosities are introduced into the problem of velocity 
field determination in the core and the film 

au ~ 
-u:u: = E,-, 

au* 
ar -&l& = &,z- 

dr 

and also the dimensionless variables 

2 
To = Pfg 

then the problem (16 j( 18) takes the form 

=-2, O,<e<l-A (53) 

(54) 

dU 
L=O, (=O 
d5 

u, = uz+ = ui\+, 

(55) 

s,. dU+ dU2, 
P’ dt 

-=YVzd,, (=1-A (56) 

where 

uz+ = 0, & = 1 

p”[l +x(S, - I)] 
p = g;x+(l -x)&‘/$’ (57) 

The solutions of equations (53) and (54) with the 

boundary conditions (55k(57) are 

s 

1-A 

u, = UA, + fd<, O<{<l-A (58) 
5 ” 

u2+ ,11 s ‘Adt I-A<t<l. 
P’ r Y”, ’ ’ ’ 

(59) 

After having represented the turbulent exchange 
coefficients Y, and Y,, in explicit form [44] for the 
relative velocities of the core and the film when cal- 
culating the integrals in equations (58) and (59), one 
finds 

(t2-pMp--1) 
(t'-QMQ- 1) ’ 

where 

_ r r1-n. f’ 

0<5<1-A 

(60) 

l-A<<<1 

(61) 

P = 0.25+a,, Q = 0.25-a, 

k(x)[S,x+(l -x)(p"lp')l ‘j2 
a, = 0.5625+ 

(rc/3)Re,,[S,x+ (1 -x)7’/u1’] > 

k(x) = [(1 -x)v’/‘v”+x]/[(l -x)p”/p’+x] is taken 
from ref. [35], m, is the constant of the order of unity, 
the ratio d’/z” is calculated according to ref. [44]. 

The analysis of equations (60) and (61) shows that 
they satisfy the limit transitions : when x + 0, A + 1, 
p 3 p’ and expression (60) yields the liquid velocity 
dist~bution in a tube. On the other hand when x -+ 
I, A --f 0, p + p“, the first term in expression (60) 
tends to zero, the second describes the velocity profile 
of a pure vapour moving in a tube. Finally, when 
EJV + 0, formulae (60) and (61) give a parabolic 
velocity profile for laminar two-phase flow, which, 
when x + 0, and x -+ I, converts into the well-known 
Poiseuille profile. 

In order to make use of the above results to cal- 
culate the velocity fields in heated channels, it is 
necessary to assume that the flow is quasi-stationary, 
so that the axial velocity profile varies just as the 
similarity factor equal to the mean relative velocity in 
the given cross-section. Such variation of the axial 
velocity is possible only in the case when the profile 
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of the transversal velocity component of the carrying 
flow develops instantaneously in the given cross- 
section on evaporation of liquid in the flow. 

In these conditions 

where 

qvlrOA 1_ f 

2 r,p”i& ( > P’ 

is the dimensionless constant. 

For the axial velocity in heated channels one gets 

u 
[P-(1 -A)‘]/(P- 1) 

93 F2-U-Wl/(Q-1) 

t2-P)/[P-(l-A)‘] 

5’-QMQ-U-A,‘1 
+ln 

0<5<1-A (63) 

u J&Lln 
42 N mp’ 

(5’-P)/(P- 1) 

CC’-QMQ-1, ’ 

l-A<t<l. (64) 

The transversal vapour velocity is determined from 
the continuity equation 

u,,_l ‘W(V) 
NA 1 + Cc, T,,lr,)~ 

x [(:*-P)ln~~~--(i’-Q)ln 

with the boundary conditions 

v, = V,(5), q = 0 

av 

3.9. The set of equations (23)-(69) was solved 
numerically. The results obtained are discussed in the 
second part of the paper. 
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UN MODELE MATHEMATIQUE BIDIMENSIONNEL DES ECOULEMENTS DISPERSES 
ANNULAIRES ET DISPERSES-I 

R&&--On presente un modtle math~matiques bidimensionnei de I’ecoulement diphasique. La for- 
mulation analytique du modee utihse les &rations de conservation de masse, de quantite de mouvement 
et d’inergie pour la vapeur et les gouttelettes en Ccoulement, pour le film liquide a la paroi du canal, et 
aussi un certain nombre de relations supplementaires pour fermer le systime d’iquations. Les hypotheses 

faites sont analysees. 

EIN ZWEIDIMENSI~NALES MODELL FUR DEN ~BERGANGSBEREI~H 
RING-~SPR~HSTRUMUNG SOWIE FfSR SPRtiHSTRC)MUNG, TEIL I 

Zusammenfassung-Es wird ein zweidimensionales mathematisches Model1 der Zweiphasenstrijmung 
vorgelegt. Die analytische Modellbildung beinhaltet Massen-, Impuls- und Energiebilanzen fur Dampf- 
striimung, Tropfenstromung, Fhissigkeitsfilm und Kanalwand sowie eine Anzahl damit verbundener 
Beziehungen, urn den Satz von Gleichungen zu vervollstlndigen. Die getroffenen vereinfachenden 

Annahmen werden analysiert. 
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ABYMEPHAS MATEMATWZECKAS MOj@JIb J@iCniEPCHO-KOJIbu;EBOrO I4 
AMCl-IEPCHOI-0 l-IOTOKOB - I 

Afworauiw-npencTaenetta neyMepHarr MaTeMa'rwfeCKan ~o~e~tb nnyx@a3Horo noToKa. AHanaTHYec- 

Kal t#IOpMyJtEipOBKa MOAtXli BKJIKNaeT ypaBHeHMK COXpaHeHWl MXCbl, HMIIyJlbCa,WepTUH AJIR IlOTOKa 

tiapa,IlOTOKtl Ka!lleJZb,iWSi IlJIeHXA ;KHAKOCTSi W CTt%IKW KaIiaJX,a TBKlKe pll.4LWIOMO~aTe~bHbIXCOOTfiO- 

rueH&i, ~C~O~~O~HH~X LIJIK 3aMbxKaH~K CHcTeMM ypaBHeH~~. Pacchio~pe~bz B ~~aH~~3~~BaH~ 


